导数

0.导数的定义

f(x)f(x)x0x_0的某一领域UU内连续,且下列极限存在,则f(x)f(x)x0x_0处可导.

  1. limxx0f(x)f(x0)xx0\lim\limits_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0}
  2. limΔx0f(x0+Δx)f(x0)Δx\lim\limits_{\Delta x\rightarrow 0} \frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}

eg: 设f(x)f(x)在区间[δ,δ][-\delta,\delta]内有定义,f(0)=1f(0)=1,且满足:
limx0ln(12x)+2xf(x)x2=0\lim\limits_{x\rightarrow0}\frac{\ln(1-2x)+2xf(x)}{x^2}=0
证明f(x)f(x)x=0x=0处可导,并求f(0)f'(0).
解:
原式=limx02x12(2x)2+2xf(x)x2=limx02xf(x)2xx22=2limx0f(x)1x2=0\lim\limits_{x\rightarrow0}\frac{-2x-\frac{1}{2}(-2x)^2+2xf(x)}{x^2}=\lim\limits_{x\rightarrow0}\frac{2xf(x)-2x}{x^2}-2=2\lim\limits_{x\rightarrow0}\frac{f(x)-1}{x}-2=0
limx0f(x)1x=1=limx0f(x)f(0)x0=f(0)\therefore \lim\limits_{x\rightarrow0}\frac{f(x)-1}{x}=1=\lim\limits_{x\rightarrow0}\frac{f(x)-f(0)}{x-0}=f'(0)
f(0)=1\therefore f'(0)=1

1.基本导数公式

下式中的aa均为常数
(xa)=axa1(a)(x^a)'=ax^{a-1}(a)

(ax)=axlna(a>0,a̸=1)(a^x)'=a^x\ln a(a>0, a\not=1)

(ex)=(ex)(e^x)'=(e^x)

(logax)=1xlna(a>0,a̸=1)(\log_ax)'=\frac{1}{x\ln a}(a>0, a\not=1)

(lnx)=1x(\ln x)'=\frac{1}{x}

(sinx)=cosx(\sin x)'=\cos x

(cosx)=sinx(\cos x)'=-\sin x

(tanx)=(sinxcosx)=cos2x+sin2xcos2x=1cos2x=sec2x(\tan x)'=(\frac{\sin x}{\cos x})'= \frac{\cos^2x + \sin^2x}{\cos^2x}=\frac{1}{\cos^2x}=\sec^2 x

(cotx)=(cosxsinx)=sin2xcos2xsin2x=1sin2x=csc2x(\cot x)' = (\frac{\cos x}{\sin x})' = \frac{-\sin^2x-\cos^2x}{\sin^2x}=-\frac{1}{\sin^2x}=-\csc^2x

(secx)=(1cosx)=0+sinxcos2x=tanxsecx(\sec x)' = (\frac{1}{\cos x})'=\frac{0+\sin x}{\cos^2x}=\tan x \sec x

(cscx)=(1sinx)=0cosxsin2x=cotxcscx(\csc x)' = (\frac{1}{\sin x})'=\frac{0-\cos x}{\sin^2x}=-\cot x\csc x

(arcsinx)=11x2(\arcsin x)'=\frac{1}{\sqrt{1-x^2}}

(arccosx)=11x2(\arccos x)'=-\frac{1}{\sqrt{1-x^2}}

(arctanx)=11+x2(\arctan x)'=\frac{1}{1+x^2}

(arccotx)=11+x2(arccot x)'=-\frac{1}{1+x^2}

(ln(x+a2±x2))=1a2±x2(\ln(x+\sqrt{a^2\pm x^2}))'=\frac{1}{\sqrt{a^2\pm x^2}} 🌠

2.常见函数的高阶倒数公式

(sinax)(n)=ansin(ax+π2.n)(\sin ax)^{(n)} = a^n\sin(ax + \frac{\pi}{2}.n)

(cosax)(n)=ancos(ax+π2.n)(\cos ax)^{(n)} = a^n\cos(ax + \frac{\pi}{2}.n)

(ax)(n)=ax(lna)n(a^x)^{(n)} = a^x(\ln a)^n

(eax)(n)=aneax(e^{ax})^{(n)}=a^ne^{ax}

(lnx)(n)=(1)n1(n1)!xn,(x>0)(\ln x)^{(n)} = (-1)^{n-1}\cdot\frac{(n-1)!}{x^n}, (x>0)

[ln(x+1)](n)=(1)n1(n1)!(x+1)n,(x>1)[\ln (x+1)]^{(n)} = (-1)^{n-1}\cdot\frac{(n-1)!}{(x+1)^n}, (x>-1)

(1x+a)(n)=(1)nn!(x+a)n+1(\frac{1}{x+a})^{(n)} = (-1)^n\cdot\frac{n!}{(x+a)^{n+1}}

(uv)(n)=k=0nCnku(nk)v(k)=u(n)v+nu(n1)v+n(n1)2u(n2)v++uv(n)(u\cdot v)^{(n)} = \sum\limits_{k=0}^nC_n^k u^{(n-k)}v^{(k)}=u^{(n)}v + nu^{(n-1)}v' + \frac{n(n-1)}{2}u^{(n-2)}v'' + \cdots + uv^{(n)}

3.变限积分求导公式

f(x)f(x)为连续函数,φ1(x),φ2(x)\varphi_1(x), \varphi_2(x)均可导,则有:
(φ1(x)φ2(x)f(t)dt)=f(φ2(x))φ2(x)f(φ1(x))φ1(x)(\lmoustache_{\varphi_1(x)}^{\varphi_2(x)}f(t)dt)' = f(\varphi_2(x))\varphi_2'(x) -f(\varphi_1(x))\varphi_1'(x)

4.由参数式所确定的函数的导数公式

设函数y=f(x)y=f(x)由某一参数式f(x)={x=x(t)y=y(t)f(x)=\begin{cases}x=x(t) \\ y=y(t) \end{cases} 确定,并设x(t),y(t)x(t),y(t)均可导,x(t)̸=0x'(t)\not=0, 则:

yx=ytxty_x' = \frac{y_t'}{x_t'}
yxx=(yx)txty_{xx}'' = \frac{(y_x')_t'}{x_t'}

5.隐函数求导

设函数y=f(x)y=f(x)由方程F(x,y)=0F(x,y)=0确定,视F(x,y)F(x,y)中的y为x的函数f(x)f(x), 对方程F(x,y)=0F(x,y)=0两边求导,得到一个关于yxy_x'的式子, 解出yxy_x'即可, 在分母不为0的情况下,将上面求过一次导数的式子进一步对x求导, 得到一个同时包含yx,yxy_x', y_x''的式子, 代入上一步中求得的yxy_x',即可得到yxy_x''.

6.幂指函数求导

u(x)v(x)=ev(x)lnu(x)u(x)^{v(x)} = e^{v(x)\ln u(x)}
(u(x)v(x))=(ev(x)lnu(x))=ev(x)lnu(x)[v(x)lnu(x)+v(x)u(x)u(x)]=u(x)v(x)[v(x)lnu(x)+v(x)u(x)u(x)](u(x)^{v(x)})' = (e^{v(x)\ln u(x)})'=e^{v(x)\ln u(x)}[v'(x)\ln u(x)+\frac{v(x)}{u(x)}u'(x)]=u(x)^{v(x)}[v'(x)\ln u(x)+\frac{v(x)}{u(x)}u'(x)]

7.反函数求导

y=f(x)y=f(x)可导且f(x)̸=0f'(x)\not=0, 则存在反函数x=φ(y)x=\varphi(y),且dxdy=1dydx=1f(x)\frac{dx}{dy}=\frac{1}{\frac{dy}{dx}}=\frac{1}{f'(x)}, 即φ(y)=1f(x)\varphi'(y)=\frac{1}{f'(x)}
y=f(x)y=f(x)存在二阶导数, 则φ(y)=dφ(y)dy=ddy(1f(x))=ddx(1f(x))dxdy=0f(x)(f(x))21f(x)=f(x)(f(x))3\varphi''(y)=\frac{d\varphi'(y)}{dy}=\frac{d}{dy}(\frac{1}{f'(x)})=\frac{d}{dx}(\frac{1}{f'(x)})\cdot \frac{dx}{dy}=\frac{0-f''(x)}{(f'(x))^2}\cdot \frac{1}{f'(x)}=-\frac{f''(x)}{(f'(x))^3}

反函数存在的充分条件: 设y=f(x)y=f(x)在区间(a,b)(a,b)内为严格单调的连续函数,则它必存在具有相同单调性的严格单调反函数.