设f ( x ) f(x) f ( x ) 在[a,b]内连续,则
介值定理三部曲
m ≤ f ( x ) ≤ M m \le f(x) \le M m ≤ f ( x ) ≤ M (套话)
m ≤ μ ≤ M m \le \mu \le M m ≤ μ ≤ M (难点, 主要步骤)
f ( ξ ) = μ , ξ ∈ [ a , b ] f(\xi)=\mu,\xi\in[a,b] f ( ξ ) = μ , ξ ∈ [ a , b ] (套话)
罗尔定理用法总结
由( u v ) ′ = u ′ v + v ′ u (uv)' = u'v + v'u ( u v ) ′ = u ′ v + v ′ u ,得
取u = f ( x ) , v = x u=f(x),v=x u = f ( x ) , v = x ,记F ( x ) = f ( x ) ⋅ x F(x)=f(x)\cdot x F ( x ) = f ( x ) ⋅ x
⇒ F ′ ( x ) = f ′ ( x ) ⋅ x + f ( x ) \Rightarrow F'(x)=f'(x)\cdot x + f(x) ⇒ F ′ ( x ) = f ′ ( x ) ⋅ x + f ( x ) ,则可证f ′ ( ξ ) ⋅ ξ + f ( ξ ) = 0 f'(\xi)\cdot\xi+f(\xi)=0 f ′ ( ξ ) ⋅ ξ + f ( ξ ) = 0
取u = f ( x ) , v = e x u=f(x),v=e^x u = f ( x ) , v = e x ,记F ( x ) = f ( x ) ⋅ e x F(x)=f(x)\cdot e^x F ( x ) = f ( x ) ⋅ e x
⇒ F ′ ( x ) = f ′ ( x ) ⋅ e x + f ( x ) ⋅ e x \Rightarrow F'(x)=f'(x)\cdot e^x + f(x)\cdot e^x ⇒ F ′ ( x ) = f ′ ( x ) ⋅ e x + f ( x ) ⋅ e x , 则可证f ′ ( ξ ) ⋅ e ξ + f ( ξ ) ⋅ e ξ = 0 f'(\xi)\cdot e^\xi + f(\xi)\cdot e^\xi=0 f ′ ( ξ ) ⋅ e ξ + f ( ξ ) ⋅ e ξ = 0 ,又由于e ξ ≥ 0 , ∴ f ′ ( ξ ) + f ( ξ ) = 0 e^\xi\ge0, \therefore f'(\xi) + f(\xi)=0 e ξ ≥ 0 , ∴ f ′ ( ξ ) + f ( ξ ) = 0 ;
取u = f ( x ) , v = e φ ( x ) u=f(x),v=e^{\varphi(x)} u = f ( x ) , v = e φ ( x ) ,记F ( x ) = f ( x ) ⋅ e φ ( x ) F(x)=f(x)\cdot e^{\varphi(x)} F ( x ) = f ( x ) ⋅ e φ ( x )
⇒ F ′ ( x ) = f ′ ( x ) e φ ( x ) + f ( x ) e φ ( x ) φ ′ ( x ) \Rightarrow F'(x)=f'(x)e^{\varphi(x)}+f(x)e^{\varphi(x)}\varphi'(x) ⇒ F ′ ( x ) = f ′ ( x ) e φ ( x ) + f ( x ) e φ ( x ) φ ′ ( x )
⇒ f ′ ( ξ ) + f ( ξ ) φ ′ ( ξ ) = 0 \Rightarrow f'(\xi)+f(\xi)\varphi'(\xi)=0 ⇒ f ′ ( ξ ) + f ( ξ ) φ ′ ( ξ ) = 0 ;
若题目要证f ′ ( ξ ) = 0 f'(\xi)=0 f ′ ( ξ ) = 0 ,则找f ( x 1 ) = f ( x 2 ) f(x_1)=f(x_2) f ( x 1 ) = f ( x 2 ) ;
若题目要证f ′ ′ ( ξ ) = 0 f''(\xi)=0 f ′ ′ ( ξ ) = 0 ,则找f ′ ( x 1 ) = f ′ ( x 2 ) f'(x_1)=f'(x_2) f ′ ( x 1 ) = f ′ ( x 2 ) 或者找f ( x 1 ) = f ( x 2 ) = f ( x 3 ) f(x_1)=f(x_2)=f(x_3) f ( x 1 ) = f ( x 2 ) = f ( x 3 )
若题目要求证f ′ ( ξ ) = a f'(\xi)=a f ′ ( ξ ) = a , 则构造函数F ( x ) = f ( x ) − a x F(x)=f(x)-ax F ( x ) = f ( x ) − a x
求导公式逆用法
( u v ) ′ = u ′ v + u v ′ (uv)' = u'v + uv' ( u v ) ′ = u ′ v + u v ′ 从右边的结果推导出左边的式子.
积分还原法
将欲证结论中的ξ \xi ξ 该成x x x ;
积分(令常数c=0);
使等式一端为0, 另一端记为F ( x ) F(x) F ( x ) .
[例1] 证明拉格朗日中值定理:f ′ ( ξ ) = f ( b ) − f ( a ) b − a , ξ ∈ ( a , b ) . f'(\xi)=\frac{f(b)-f(a)}{b-a},\xi\in(a,b). f ′ ( ξ ) = b − a f ( b ) − f ( a ) , ξ ∈ ( a , b ) .
f ′ ( x ) = f ( b ) − f ( a ) b − a f'(x)=\frac{f(b)-f(a)}{b-a} f ′ ( x ) = b − a f ( b ) − f ( a )
f ( x ) = f ( b ) − f ( a ) b − a x , ( c = 0 ) f(x)=\frac{f(b)-f(a)}{b-a}x,(c=0) f ( x ) = b − a f ( b ) − f ( a ) x , ( c = 0 )
令F ( x ) = f ( x ) − f ( b ) − f ( a ) b − a x F(x)=f(x) - \frac{f(b)-f(a)}{b-a}x F ( x ) = f ( x ) − b − a f ( b ) − f ( a ) x
则F ( a ) = f ( a ) b − f ( b ) a b − a = F ( b ) , ⇒ ∃ ξ ∈ ( a , b ) , F ′ ( ξ ) = 0 F(a)=\frac{f(a)b - f(b)a}{b-a}=F(b), \Rightarrow\exists\xi\in(a,b),F'(\xi)=0 F ( a ) = b − a f ( a ) b − f ( b ) a = F ( b ) , ⇒ ∃ ξ ∈ ( a , b ) , F ′ ( ξ ) = 0 .
[例2] 证明柯西中值定理:f ′ ( ξ ) g ′ ( ξ ) = f ( b ) − f ( a ) g ( b ) − g ( a ) \frac{f'(\xi)}{g'(\xi)}=\frac{f(b)-f(a)}{g(b)-g(a)} g ′ ( ξ ) f ′ ( ξ ) = g ( b ) − g ( a ) f ( b ) − f ( a )
f ′ ( x ) g ′ ( x ) = f ( b ) − f ( a ) g ( b ) − g ( a ) ⇒ f ′ ( x ) = f ( b ) − f ( a ) g ( b ) − g ( a ) g ′ ( x ) \frac{f'(x)}{g'(x)} = \frac{f(b)-f(a)}{g(b)-g(a)} \Rightarrow f'(x)=\frac{f(b)-f(a)}{g(b)-g(a)}g'(x) g ′ ( x ) f ′ ( x ) = g ( b ) − g ( a ) f ( b ) − f ( a ) ⇒ f ′ ( x ) = g ( b ) − g ( a ) f ( b ) − f ( a ) g ′ ( x )
f ( x ) = f ( b ) − f ( a ) g ( b ) − g ( a ) g ( x ) , ( c = 0 ) f(x)=\frac{f(b)-f(a)}{g(b)-g(a)}g(x),(c=0) f ( x ) = g ( b ) − g ( a ) f ( b ) − f ( a ) g ( x ) , ( c = 0 )
令F ( x ) = f ( x ) − f ( b ) − f ( a ) g ( b ) − g ( a ) g ( x ) F(x)=f(x)-\frac{f(b)-f(a)}{g(b)-g(a)}g(x) F ( x ) = f ( x ) − g ( b ) − g ( a ) f ( b ) − f ( a ) g ( x ) ,可得F ( a ) = f ( a ) g ( b ) − f ( b ) g ( a ) g ( b ) − g ( a ) = F ( b ) F(a)=\frac{f(a)g(b)-f(b)g(a)}{g(b)-g(a)}=F(b) F ( a ) = g ( b ) − g ( a ) f ( a ) g ( b ) − f ( b ) g ( a ) = F ( b ) ,根据罗尔中值定理,∃ ξ ∈ ( a , b ) , F ′ ( ξ ) = 0 \exists\xi\in(a,b),F'(\xi)=0 ∃ ξ ∈ ( a , b ) , F ′ ( ξ ) = 0 .
中值定理的综合题一般至少会用到两个不同的中值定理,所以上述10个中值定理最好熟记于心,然后根据题目联想特定的定理.
[例1] (拉格朗日中值定理,介值定理)
设函数f ( x ) f(x) f ( x ) 在[ 0 , 1 ] [0,1] [ 0 , 1 ] 上连续, 在( 0 , 1 ) (0,1) ( 0 , 1 ) 内可导,且f ( 0 ) = 0 , f ( 1 ) = 1 f(0)=0,f(1)=1 f ( 0 ) = 0 , f ( 1 ) = 1 ,证明存在两个不同的ξ 1 , ξ 2 ∈ ( 0 , 1 ) \xi_1,\xi_2\in(0,1) ξ 1 , ξ 2 ∈ ( 0 , 1 ) ,使得1 f ′ ( ξ 1 ) + 1 f ′ ( ξ 2 ) = 2 \frac{1}{f'(\xi_1)}+\frac{1}{f'(\xi_2)}=2 f ′ ( ξ 1 ) 1 + f ′ ( ξ 2 ) 1 = 2 .
分析: 只要题目中说到有两个不同的ξ 1 , ξ 2 \xi_1,\xi_2 ξ 1 , ξ 2 ,一般都需要划分区间.
证明: 用ξ \xi ξ 将区间[ 0 , 1 ] [0,1] [ 0 , 1 ] 划分为[ 0 , ξ ] , [ ξ , 1 ] [0,\xi],[\xi,1] [ 0 , ξ ] , [ ξ , 1 ] .在这两个区间上分别对f ( x ) f(x) f ( x ) 使用拉格朗日中值定理,得:
f ( ξ ) − f ( 0 ) = f ′ ( ξ 1 ) ( ξ − 0 ) ⇒ 1 f ′ ( ξ 1 ) = ξ f ( ξ ) f(\xi) - f(0)=f'(\xi_1)(\xi-0) \Rightarrow \frac{1}{f'(\xi_1)}=\frac{\xi}{f(\xi)} f ( ξ ) − f ( 0 ) = f ′ ( ξ 1 ) ( ξ − 0 ) ⇒ f ′ ( ξ 1 ) 1 = f ( ξ ) ξ
f ( 1 ) − f ( ξ ) = f ′ ( ξ 2 ) ( 1 − ξ ) ⇒ 1 f ′ ( ξ 2 ) = 1 − ξ 1 − f ( ξ ) f(1) - f(\xi)=f'(\xi_2)(1-\xi) \Rightarrow \frac{1}{f'(\xi_2)}=\frac{1-\xi}{1-f(\xi)} f ( 1 ) − f ( ξ ) = f ′ ( ξ 2 ) ( 1 − ξ ) ⇒ f ′ ( ξ 2 ) 1 = 1 − f ( ξ ) 1 − ξ
由于f ( 0 ) = 0 , f ( 1 ) = 1 f(0)=0,f(1)=1 f ( 0 ) = 0 , f ( 1 ) = 1 ,根据介值定理,∃ ξ ∈ ( 0 , 1 ) , f ( ξ ) = 1 2 , \exists\xi\in(0,1), f(\xi)=\frac{1}{2}, ∃ ξ ∈ ( 0 , 1 ) , f ( ξ ) = 2 1 , 此时有:ξ f ′ ( ξ ) + 1 − ξ 1 − f ′ ( ξ ) = 2 \frac{\xi}{f'(\xi)}+\frac{1-\xi}{1-f'(\xi)} = 2 f ′ ( ξ ) ξ + 1 − f ′ ( ξ ) 1 − ξ = 2
故存在两个不同的ξ 1 , ξ 2 ∈ ( 0 , 1 ) \xi_1,\xi_2\in(0,1) ξ 1 , ξ 2 ∈ ( 0 , 1 ) ,使得1 f ′ ( ξ 1 ) + 1 f ′ ( ξ 2 ) = 2 \frac{1}{f'(\xi_1)}+\frac{1}{f'(\xi_2)}=2 f ′ ( ξ 1 ) 1 + f ′ ( ξ 2 ) 1 = 2
[例2] (罗尔定理, 介质定理)
设f ( x ) f(x) f ( x ) 在[ 0 , π 2 ] [0,\frac{\pi}{2}] [ 0 , 2 π ] 上的一阶导数连续, 在( 0 , π 2 ) (0,\frac{\pi}{2}) ( 0 , 2 π ) 内二阶可导,且f ( 0 ) = 0 , f ( 1 ) = 3 , f ( π 2 ) = 1 f(0)=0,f(1)=3,f(\frac{\pi}{2})=1 f ( 0 ) = 0 , f ( 1 ) = 3 , f ( 2 π ) = 1 ,证明存在ξ ∈ ( 0 , π 2 ) \xi\in(0,\frac{\pi}{2}) ξ ∈ ( 0 , 2 π ) ,使得f ′ ( ξ ) + f ′ ′ ( ξ ) tan x = 0 f'(\xi)+f''(\xi)\tan x=0 f ′ ( ξ ) + f ′ ′ ( ξ ) tan x = 0 .
分析:
F ′ ( x ) = u ′ v + u v ′ = 0 F'(x)=u'v+uv'=0 F ′ ( x ) = u ′ v + u v ′ = 0
F ′ ( x ) = 1 ⋅ f ′ ( x ) + tan x f ′ ′ ( x ) F'(x)=1\cdot f'(x)+\tan x f''(x) F ′ ( x ) = 1 ⋅ f ′ ( x ) + tan x f ′ ′ ( x )
F ′ ( x ) = cos x f ′ ( x ) + sin x f ′ ′ ( x ) = 0 F'(x)=\cos xf'(x) + \sin x f''(x)=0 F ′ ( x ) = cos x f ′ ( x ) + sin x f ′ ′ ( x ) = 0
F ( x ) = f ′ ( x ) sin x F(x) = f'(x)\sin x F ( x ) = f ′ ( x ) sin x
证明:
令F ( x ) = f ( x ) sin x F(x)=f(x)\sin x F ( x ) = f ( x ) sin x .
∵ f ( 0 ) = 0 , f ( 1 ) = 3 \because f(0)=0,f(1)=3 ∵ f ( 0 ) = 0 , f ( 1 ) = 3 ,在( 0 , 1 ) (0,1) ( 0 , 1 ) 内使用介值定理,
∃ η ∈ ( 0 , 1 ) , f ( η ) = 1 \exists \eta\in(0,1),f(\eta)=1 ∃ η ∈ ( 0 , 1 ) , f ( η ) = 1 .
∵ f ( η ) = f ( π 2 ) = 1 \because f(\eta)=f(\frac{\pi}{2})=1 ∵ f ( η ) = f ( 2 π ) = 1 ,在( η , π 2 ) (\eta,\frac{\pi}{2}) ( η , 2 π ) 上使用罗尔中值定理,
∃ τ ∈ ( η , π 2 ) , f ′ ( τ ) = 0 \exists\tau\in(\eta,\frac{\pi}{2}),f'(\tau)=0 ∃ τ ∈ ( η , 2 π ) , f ′ ( τ ) = 0
∵ F ′ ( 0 ) = f ′ ( 0 ) sin 0 = 0 , F ( τ ) = f ′ ( τ ) sin τ = 0 \because F'(0)=f'(0)\sin0=0,F(\tau)=f'(\tau)\sin\tau=0 ∵ F ′ ( 0 ) = f ′ ( 0 ) sin 0 = 0 , F ( τ ) = f ′ ( τ ) sin τ = 0 ,根据罗尔定理
∃ ξ ∈ ( 0 , τ ) ⊂ ( 0 , π 2 ) , F ′ ( ξ ) = f ′ ( ξ ) cos ξ + f ′ ′ ( ξ ) sin ξ = 0 \exists\xi\in(0,\tau)\subset(0,\frac{\pi}{2}), F'(\xi)=f'(\xi)\cos\xi+f''(\xi)\sin\xi=0 ∃ ξ ∈ ( 0 , τ ) ⊂ ( 0 , 2 π ) , F ′ ( ξ ) = f ′ ( ξ ) cos ξ + f ′ ′ ( ξ ) sin ξ = 0
即f ′ ( ξ ) + f ′ ′ ( ξ ) tan ξ = 0 f'(\xi)+f''(\xi)\tan\xi=0 f ′ ( ξ ) + f ′ ′ ( ξ ) tan ξ = 0
[例3] (罗尔定理)
Let f ( x ) f(x) f ( x ) is thrid-order derivative on [0,1],and f ( 0 ) = f ( 1 ) = 0 f(0)=f(1)=0 f ( 0 ) = f ( 1 ) = 0 ,set F ( x ) = x 2 f ( x ) F(x)=x^2f(x) F ( x ) = x 2 f ( x ) ,prove that there is at least on point ξ ∈ ( 0 , 1 ) \xi\in(0,1) ξ ∈ ( 0 , 1 ) , so that F ′ ′ ′ ( ξ ) = 0 F'''(\xi)=0 F ′ ′ ′ ( ξ ) = 0 .
prove:
F ( x ) = x 2 f ( x ) F(x)=x^2f(x) F ( x ) = x 2 f ( x )
∵ F ( 0 ) = F ( 1 ) = 0 \because F(0)=F(1)=0 ∵ F ( 0 ) = F ( 1 ) = 0 ,according to Rolle theorem,
∃ ξ 1 ∈ ( 0 , 1 ) , F ′ ( ξ 1 ) = 0 \exists \xi_1\in(0,1), F'(\xi_1)=0 ∃ ξ 1 ∈ ( 0 , 1 ) , F ′ ( ξ 1 ) = 0
F ′ ( x ) = 2 x f ( x ) + x 2 f ′ ( x ) F'(x)=2xf(x)+x^2f'(x) F ′ ( x ) = 2 x f ( x ) + x 2 f ′ ( x )
∵ F ′ ( 0 ) = 0 = F ′ ( ξ 1 ) \because F'(0)=0=F'(\xi_1) ∵ F ′ ( 0 ) = 0 = F ′ ( ξ 1 ) ,according to Rolle theorem,
∃ ξ 2 ∈ ( 0 , ξ 1 ) , F ′ ′ ( ξ 2 ) = 0 \exists\xi_2\in(0,\xi_1), F''(\xi_2)=0 ∃ ξ 2 ∈ ( 0 , ξ 1 ) , F ′ ′ ( ξ 2 ) = 0
F ′ ′ ( x ) = 2 f ( x ) + 2 x f ′ ( x ) + 2 x f ′ ( x ) + x 2 f ′ ′ ( x ) F''(x)=2f(x)+2xf'(x)+2xf'(x) + x^2f''(x) F ′ ′ ( x ) = 2 f ( x ) + 2 x f ′ ( x ) + 2 x f ′ ( x ) + x 2 f ′ ′ ( x )
∵ F ′ ′ ( 0 ) = 0 = F ′ ′ ( ξ 2 ) \because F''(0)=0 = F''(\xi_2) ∵ F ′ ′ ( 0 ) = 0 = F ′ ′ ( ξ 2 ) ,according to Rolle theorem,
∃ ξ ∈ ( 0 , ξ 2 ) ⊂ ( 0 , 1 ) , F ′ ′ ′ ( ξ ) = 0 \exists\xi\in(0,\xi_2)\subset(0,1), F'''(\xi)=0 ∃ ξ ∈ ( 0 , ξ 2 ) ⊂ ( 0 , 1 ) , F ′ ′ ′ ( ξ ) = 0 . Done!
[例4] (罗尔定理)
设f ( x ) , g ( x ) f(x),g(x) f ( x ) , g ( x ) 在[ a , b ] [a,b] [ a , b ] 二阶可导,g ′ ′ ( x ) ̸ = 0 , f ( a ) = f ( b ) = g ( a ) = g ( b ) = 0 . g''(x)\not=0,f(a)=f(b)=g(a)=g(b)=0. g ′ ′ ( x ) ̸ = 0 , f ( a ) = f ( b ) = g ( a ) = g ( b ) = 0 .
求证:
(1) g ( x ) ̸ = 0 , ∀ x ∈ ( a , b ) g(x)\not=0,\forall x\in(a,b) g ( x ) ̸ = 0 , ∀ x ∈ ( a , b )
(2) ∃ ξ ∈ ( a , b ) , f ( ξ ) g ( ξ ) = f ′ ′ ( ξ ) g ′ ′ ( ξ ) \exists\xi\in(a,b),\frac{f(\xi)}{g(\xi)}=\frac{f''(\xi)}{g''(\xi)} ∃ ξ ∈ ( a , b ) , g ( ξ ) f ( ξ ) = g ′ ′ ( ξ ) f ′ ′ ( ξ )
证明:
(1).反证法,设∃ x 0 ∈ ( a , b ) , g ( x 0 ) = 0 \exists x_0\in(a,b),g(x_0)=0 ∃ x 0 ∈ ( a , b ) , g ( x 0 ) = 0 ,则:
g ( a ) = g ( x 0 ) = 0 ⇒ ∃ ξ 1 ∈ ( a , x 0 ) , g ′ ( ξ 1 ) = 0 g(a)=g(x_0)=0 \Rightarrow \exists\xi_1\in(a,x_0), g'(\xi_1)=0 g ( a ) = g ( x 0 ) = 0 ⇒ ∃ ξ 1 ∈ ( a , x 0 ) , g ′ ( ξ 1 ) = 0
g ( x 0 ) = g ( b ) = 0 ⇒ ∃ ξ 2 ∈ ( x 0 , b ) , g ′ ( ξ 2 ) = 0 g(x_0)=g(b)=0 \Rightarrow \exists\xi_2\in(x_0,b), g'(\xi_2)=0 g ( x 0 ) = g ( b ) = 0 ⇒ ∃ ξ 2 ∈ ( x 0 , b ) , g ′ ( ξ 2 ) = 0
g ′ ( ξ 1 ) = g ′ ( ξ 2 ) = 0 ⇒ ∃ ξ ∈ ( ξ 1 , ξ 2 ) ⊂ ( a , b ) , g ′ ′ ( ξ ) = 0 g'(\xi_1)=g'(\xi_2)=0 \Rightarrow \exists \xi\in(\xi_1,\xi_2)\subset(a,b),g''(\xi)=0 g ′ ( ξ 1 ) = g ′ ( ξ 2 ) = 0 ⇒ ∃ ξ ∈ ( ξ 1 , ξ 2 ) ⊂ ( a , b ) , g ′ ′ ( ξ ) = 0 , 与题设矛盾.
(2) 令F ( x ) = f ( x ) g ′ ( x ) − f ′ ( x ) g ( x ) F(x) = f(x)g'(x) - f'(x)g(x) F ( x ) = f ( x ) g ′ ( x ) − f ′ ( x ) g ( x ) ,则有:
F ( a ) = f ( a ) g ′ ( a ) − f ′ ( a ) g ( a ) = 0 F(a) = f(a)g'(a) - f'(a)g(a)=0 F ( a ) = f ( a ) g ′ ( a ) − f ′ ( a ) g ( a ) = 0
F ( b ) = f ( b ) g ′ ( b ) − f ′ ( b ) g ( b ) = 0 F(b) = f(b)g'(b) - f'(b)g(b)=0 F ( b ) = f ( b ) g ′ ( b ) − f ′ ( b ) g ( b ) = 0
由罗尔定理:
∃ ξ ∈ ( a , b ) , F ′ ( ξ ) = 0 , \exists\xi\in(a,b),F'(\xi)=0, ∃ ξ ∈ ( a , b ) , F ′ ( ξ ) = 0 , 即f ( ξ ) g ( ξ ) = f ′ ′ ( ξ ) g ′ ′ ( ξ ) \frac{f(\xi)}{g(\xi)}=\frac{f''(\xi)}{g''(\xi)} g ( ξ ) f ( ξ ) = g ′ ′ ( ξ ) f ′ ′ ( ξ ) .
[例5] (积分中值定理, 拉格朗日中值定理)
设f ( x ) f(x) f ( x ) 二阶可导,且f ( 2 ) > f ( 1 ) , f ( 2 ) > ∫ 2 3 f ( x ) d x f(2)>f(1), f(2)>\int_2^3f(x)dx f ( 2 ) > f ( 1 ) , f ( 2 ) > ∫ 2 3 f ( x ) d x ,证明:∃ ξ ∈ ( 1 , 3 ) \exists\xi\in(1,3) ∃ ξ ∈ ( 1 , 3 ) ,使f ′ ′ ( ξ ) < 0 f''(\xi)<0 f ′ ′ ( ξ ) < 0 .
证明:
由积分中值定理: ∃ η ∈ ( 2 , 3 ) , ∫ 2 3 f ( x ) d x = f ′ ( η ) ( 3 − 2 ) = f ′ ( η ) \exists\eta\in(2,3),\int_2^3f(x)dx=f'(\eta)(3-2)=f'(\eta) ∃ η ∈ ( 2 , 3 ) , ∫ 2 3 f ( x ) d x = f ′ ( η ) ( 3 − 2 ) = f ′ ( η )
f ( 1 ) < f ( 2 ) ⇒ ∃ ξ 1 ∈ ( 1 , 2 ) , f ′ ( ξ 1 ) > 0 f(1)<f(2) \Rightarrow \exists\xi_1\in(1,2),f'(\xi_1)>0 f ( 1 ) < f ( 2 ) ⇒ ∃ ξ 1 ∈ ( 1 , 2 ) , f ′ ( ξ 1 ) > 0
f ( 2 ) > f ′ ( η ) ⇒ ∃ ξ 1 ∈ ( 2 , η ) , f ′ ( ξ 2 ) < 0 f(2)>f'(\eta) \Rightarrow \exists\xi_1\in(2,\eta),f'(\xi_2)<0 f ( 2 ) > f ′ ( η ) ⇒ ∃ ξ 1 ∈ ( 2 , η ) , f ′ ( ξ 2 ) < 0
由拉格朗日中值定理:
∃ ξ ∈ ( ξ 1 , ξ 2 ) , f ′ ( ξ 2 ) − f ′ ( ξ 1 ) = f ′ ′ ( ξ ) ( ξ 2 − ξ 1 ) \exists\xi\in(\xi_1,\xi_2), f'(\xi_2)-f'(\xi_1)=f''(\xi)(\xi_2-\xi_1) ∃ ξ ∈ ( ξ 1 , ξ 2 ) , f ′ ( ξ 2 ) − f ′ ( ξ 1 ) = f ′ ′ ( ξ ) ( ξ 2 − ξ 1 )
∵ f ′ ( ξ 2 ) < 0 , f ′ ( ξ 1 ) > 0 , ξ 2 > ξ 1 \because f'(\xi_2)<0, f'(\xi_1)>0, \xi_2 > \xi_1 ∵ f ′ ( ξ 2 ) < 0 , f ′ ( ξ 1 ) > 0 , ξ 2 > ξ 1
∴ f ′ ( ξ 2 ) − f ′ ( ξ 1 ) < 0 , ( ξ 2 − ξ 1 ) > 0 \therefore f'(\xi_2)-f'(\xi_1)<0, (\xi_2-\xi_1)>0 ∴ f ′ ( ξ 2 ) − f ′ ( ξ 1 ) < 0 , ( ξ 2 − ξ 1 ) > 0
∴ f ′ ′ ( ξ ) < 0 \therefore f''(\xi)<0 ∴ f ′ ′ ( ξ ) < 0
[例6] (f ( x ) f(x) f ( x ) 具体化 , 拉格朗日中值定理)
设0 < a < b < 1 0<a<b<1 0 < a < b < 1 ,证明arctan b − arctan a < b − a 2 a b \arctan b - \arctan a < \frac{b-a}{2ab} arctan b − arctan a < 2 a b b − a
证明:
令f ( x ) = arctan x f(x)=\arctan x f ( x ) = arctan x ,在[ a , b ] [a,b] [ a , b ] 上用拉氏定理:
arctan b − arctan a = b − a 1 + ξ 2 < b − a 1 + a 2 < b − a a 2 + b 2 < b − a 2 a b \arctan b-\arctan a = \frac{b-a}{1+\xi^2}<\frac{b-a}{1+a^2}<\frac{b-a}{a^2+b^2}<\frac{b-a}{2ab} arctan b − arctan a = 1 + ξ 2 b − a < 1 + a 2 b − a < a 2 + b 2 b − a < 2 a b b − a .
其中ξ ∈ ( a , b ) . \xi\in(a,b). ξ ∈ ( a , b ) .
[例7] (ξ \xi ξ 具体化, 拉个朗日中值定理)
设f ( x ) = arcsin x , ξ f(x)=\arcsin x,\xi f ( x ) = arcsin x , ξ 为f ( x ) f(x) f ( x ) 在[ 0 , t ] [0,t] [ 0 , t ] 上拉格朗日中值定理的中值点,0 < t < 1 0<t<1 0 < t < 1 ,求lim t → 0 + ξ t . \lim\limits_{t\rightarrow0^+}\frac{\xi}{t}. t → 0 + lim t ξ .
解:在[ 0 , t ] [0,t] [ 0 , t ] 上使用拉格朗日中值定理:
arcsin t − arcsin 0 = t 1 − ξ 2 ⇒ ξ = 1 − t 2 arcsin 2 t \arcsin t - \arcsin 0 = \frac{t}{\sqrt{1-\xi^2}} \Rightarrow \xi=\sqrt{1-\frac{t^2}{\arcsin^2 t}} arcsin t − arcsin 0 = 1 − ξ 2 t ⇒ ξ = 1 − arcsin 2 t t 2
lim t → 0 + ξ t = lim t → 0 + 1 − t 2 arcsin t t = lim t → 0 + arcsin 2 t − t 2 t ⋅ arcsin t lim t → 0 + = ( arcsin t + t ) ( arcsin t − t ) t 2 = lim t → 0 + 2 t ( 1 6 x 3 + o ( x 3 ) ) t 2 = 1 3 \lim\limits_{t\rightarrow0^+}\frac{\xi}{t}=\lim\limits_{t\rightarrow0^+}\frac{\sqrt{1-\frac{t^2}{\arcsin^t}}}{t}=\lim\limits_{t\rightarrow0^+}\frac{\sqrt{\arcsin^2t-t^2}}{t\cdot\arcsin t}\lim\limits_{t\rightarrow0^+}=\frac{\sqrt{(\arcsin t+t)(\arcsin t-t)}}{t^2}=\lim\limits_{t\rightarrow0^+}\frac{\sqrt{2t(\frac{1}{6}x^3+o(x^3))}}{t^2}=\sqrt{\frac{1}{3}} t → 0 + lim t ξ = t → 0 + lim t 1 − arcsin t t 2 = t → 0 + lim t ⋅ arcsin t arcsin 2 t − t 2 t → 0 + lim = t 2 ( arcsin t + t ) ( arcsin t − t ) = t → 0 + lim t 2 2 t ( 6 1 x 3 + o ( x 3 ) ) = 3 1