中值定理总结 ⭐️⭐️⭐️

f(x)f(x)在[a,b]内连续,则

中值定理证明题的一般方法

例题

中值定理的综合题一般至少会用到两个不同的中值定理,所以上述10个中值定理最好熟记于心,然后根据题目联想特定的定理.

[例1] (拉格朗日中值定理,介值定理)
设函数f(x)f(x)[0,1][0,1]上连续, 在(0,1)(0,1)内可导,且f(0)=0,f(1)=1f(0)=0,f(1)=1,证明存在两个不同的ξ1,ξ2(0,1)\xi_1,\xi_2\in(0,1),使得1f(ξ1)+1f(ξ2)=2\frac{1}{f'(\xi_1)}+\frac{1}{f'(\xi_2)}=2.
分析: 只要题目中说到有两个不同的ξ1,ξ2\xi_1,\xi_2,一般都需要划分区间.
证明: 用ξ\xi将区间[0,1][0,1]划分为[0,ξ],[ξ,1][0,\xi],[\xi,1].在这两个区间上分别对f(x)f(x)使用拉格朗日中值定理,得:
f(ξ)f(0)=f(ξ1)(ξ0)1f(ξ1)=ξf(ξ)f(\xi) - f(0)=f'(\xi_1)(\xi-0) \Rightarrow \frac{1}{f'(\xi_1)}=\frac{\xi}{f(\xi)}
f(1)f(ξ)=f(ξ2)(1ξ)1f(ξ2)=1ξ1f(ξ)f(1) - f(\xi)=f'(\xi_2)(1-\xi) \Rightarrow \frac{1}{f'(\xi_2)}=\frac{1-\xi}{1-f(\xi)}

由于f(0)=0,f(1)=1f(0)=0,f(1)=1,根据介值定理,ξ(0,1),f(ξ)=12,\exists\xi\in(0,1), f(\xi)=\frac{1}{2},此时有:ξf(ξ)+1ξ1f(ξ)=2\frac{\xi}{f'(\xi)}+\frac{1-\xi}{1-f'(\xi)} = 2
故存在两个不同的ξ1,ξ2(0,1)\xi_1,\xi_2\in(0,1),使得1f(ξ1)+1f(ξ2)=2\frac{1}{f'(\xi_1)}+\frac{1}{f'(\xi_2)}=2


[例2] (罗尔定理, 介质定理)
f(x)f(x)[0,π2][0,\frac{\pi}{2}]上的一阶导数连续, 在(0,π2)(0,\frac{\pi}{2})内二阶可导,且f(0)=0,f(1)=3,f(π2)=1f(0)=0,f(1)=3,f(\frac{\pi}{2})=1,证明存在ξ(0,π2)\xi\in(0,\frac{\pi}{2}),使得f(ξ)+f(ξ)tanx=0f'(\xi)+f''(\xi)\tan x=0.
分析:
F(x)=uv+uv=0F'(x)=u'v+uv'=0
F(x)=1f(x)+tanxf(x)F'(x)=1\cdot f'(x)+\tan x f''(x)
F(x)=cosxf(x)+sinxf(x)=0F'(x)=\cos xf'(x) + \sin x f''(x)=0
F(x)=f(x)sinxF(x) = f'(x)\sin x
证明:
F(x)=f(x)sinxF(x)=f(x)\sin x.
f(0)=0,f(1)=3\because f(0)=0,f(1)=3,在(0,1)(0,1)内使用介值定理,
η(0,1),f(η)=1\exists \eta\in(0,1),f(\eta)=1.
f(η)=f(π2)=1\because f(\eta)=f(\frac{\pi}{2})=1,在(η,π2)(\eta,\frac{\pi}{2})上使用罗尔中值定理,
τ(η,π2),f(τ)=0\exists\tau\in(\eta,\frac{\pi}{2}),f'(\tau)=0
F(0)=f(0)sin0=0,F(τ)=f(τ)sinτ=0\because F'(0)=f'(0)\sin0=0,F(\tau)=f'(\tau)\sin\tau=0,根据罗尔定理
ξ(0,τ)(0,π2),F(ξ)=f(ξ)cosξ+f(ξ)sinξ=0\exists\xi\in(0,\tau)\subset(0,\frac{\pi}{2}), F'(\xi)=f'(\xi)\cos\xi+f''(\xi)\sin\xi=0
f(ξ)+f(ξ)tanξ=0f'(\xi)+f''(\xi)\tan\xi=0


[例3] (罗尔定理)
Let f(x)f(x) is thrid-order derivative on [0,1],and f(0)=f(1)=0f(0)=f(1)=0,set F(x)=x2f(x)F(x)=x^2f(x),prove that there is at least on point ξ(0,1)\xi\in(0,1), so that F(ξ)=0F'''(\xi)=0.
prove:
F(x)=x2f(x)F(x)=x^2f(x)
F(0)=F(1)=0\because F(0)=F(1)=0,according to Rolle theorem,
ξ1(0,1),F(ξ1)=0\exists \xi_1\in(0,1), F'(\xi_1)=0
F(x)=2xf(x)+x2f(x)F'(x)=2xf(x)+x^2f'(x)
F(0)=0=F(ξ1)\because F'(0)=0=F'(\xi_1),according to Rolle theorem,
ξ2(0,ξ1),F(ξ2)=0\exists\xi_2\in(0,\xi_1), F''(\xi_2)=0
F(x)=2f(x)+2xf(x)+2xf(x)+x2f(x)F''(x)=2f(x)+2xf'(x)+2xf'(x) + x^2f''(x)
F(0)=0=F(ξ2)\because F''(0)=0 = F''(\xi_2),according to Rolle theorem,
ξ(0,ξ2)(0,1),F(ξ)=0\exists\xi\in(0,\xi_2)\subset(0,1), F'''(\xi)=0. Done!


[例4] (罗尔定理)
f(x),g(x)f(x),g(x)[a,b][a,b]二阶可导,g(x)̸=0,f(a)=f(b)=g(a)=g(b)=0.g''(x)\not=0,f(a)=f(b)=g(a)=g(b)=0.
求证:
(1) g(x)̸=0,x(a,b)g(x)\not=0,\forall x\in(a,b)
(2) ξ(a,b),f(ξ)g(ξ)=f(ξ)g(ξ)\exists\xi\in(a,b),\frac{f(\xi)}{g(\xi)}=\frac{f''(\xi)}{g''(\xi)}
证明:
(1).反证法,设x0(a,b),g(x0)=0\exists x_0\in(a,b),g(x_0)=0,则:
g(a)=g(x0)=0ξ1(a,x0),g(ξ1)=0g(a)=g(x_0)=0 \Rightarrow \exists\xi_1\in(a,x_0), g'(\xi_1)=0
g(x0)=g(b)=0ξ2(x0,b),g(ξ2)=0g(x_0)=g(b)=0 \Rightarrow \exists\xi_2\in(x_0,b), g'(\xi_2)=0
g(ξ1)=g(ξ2)=0ξ(ξ1,ξ2)(a,b),g(ξ)=0g'(\xi_1)=g'(\xi_2)=0 \Rightarrow \exists \xi\in(\xi_1,\xi_2)\subset(a,b),g''(\xi)=0, 与题设矛盾.
(2) 令F(x)=f(x)g(x)f(x)g(x)F(x) = f(x)g'(x) - f'(x)g(x),则有:
F(a)=f(a)g(a)f(a)g(a)=0F(a) = f(a)g'(a) - f'(a)g(a)=0
F(b)=f(b)g(b)f(b)g(b)=0F(b) = f(b)g'(b) - f'(b)g(b)=0
由罗尔定理:
ξ(a,b),F(ξ)=0,\exists\xi\in(a,b),F'(\xi)=0,f(ξ)g(ξ)=f(ξ)g(ξ)\frac{f(\xi)}{g(\xi)}=\frac{f''(\xi)}{g''(\xi)}.


[例5] (积分中值定理, 拉格朗日中值定理)
f(x)f(x)二阶可导,且f(2)>f(1),f(2)>23f(x)dxf(2)>f(1), f(2)>\int_2^3f(x)dx,证明:ξ(1,3)\exists\xi\in(1,3),使f(ξ)<0f''(\xi)<0.
证明:
由积分中值定理: η(2,3),23f(x)dx=f(η)(32)=f(η)\exists\eta\in(2,3),\int_2^3f(x)dx=f'(\eta)(3-2)=f'(\eta)
f(1)<f(2)ξ1(1,2),f(ξ1)>0f(1)<f(2) \Rightarrow \exists\xi_1\in(1,2),f'(\xi_1)>0
f(2)>f(η)ξ1(2,η),f(ξ2)<0f(2)>f'(\eta) \Rightarrow \exists\xi_1\in(2,\eta),f'(\xi_2)<0
由拉格朗日中值定理:
ξ(ξ1,ξ2),f(ξ2)f(ξ1)=f(ξ)(ξ2ξ1)\exists\xi\in(\xi_1,\xi_2), f'(\xi_2)-f'(\xi_1)=f''(\xi)(\xi_2-\xi_1)
f(ξ2)<0,f(ξ1)>0,ξ2>ξ1\because f'(\xi_2)<0, f'(\xi_1)>0, \xi_2 > \xi_1
f(ξ2)f(ξ1)<0,(ξ2ξ1)>0\therefore f'(\xi_2)-f'(\xi_1)<0, (\xi_2-\xi_1)>0
f(ξ)<0\therefore f''(\xi)<0


[例6] (f(x)f(x)具体化 , 拉格朗日中值定理)
0<a<b<10<a<b<1,证明arctanbarctana<ba2ab\arctan b - \arctan a < \frac{b-a}{2ab}
证明:
f(x)=arctanxf(x)=\arctan x,在[a,b][a,b]上用拉氏定理:
arctanbarctana=ba1+ξ2<ba1+a2<baa2+b2<ba2ab\arctan b-\arctan a = \frac{b-a}{1+\xi^2}<\frac{b-a}{1+a^2}<\frac{b-a}{a^2+b^2}<\frac{b-a}{2ab}.
其中ξ(a,b).\xi\in(a,b).


[例7] (ξ\xi具体化, 拉个朗日中值定理)
f(x)=arcsinx,ξf(x)=\arcsin x,\xif(x)f(x)[0,t][0,t]上拉格朗日中值定理的中值点,0<t<10<t<1,求limt0+ξt.\lim\limits_{t\rightarrow0^+}\frac{\xi}{t}.
解:在[0,t][0,t]上使用拉格朗日中值定理:
arcsintarcsin0=t1ξ2ξ=1t2arcsin2t\arcsin t - \arcsin 0 = \frac{t}{\sqrt{1-\xi^2}} \Rightarrow \xi=\sqrt{1-\frac{t^2}{\arcsin^2 t}}

limt0+ξt=limt0+1t2arcsintt=limt0+arcsin2tt2tarcsintlimt0+=(arcsint+t)(arcsintt)t2=limt0+2t(16x3+o(x3))t2=13\lim\limits_{t\rightarrow0^+}\frac{\xi}{t}=\lim\limits_{t\rightarrow0^+}\frac{\sqrt{1-\frac{t^2}{\arcsin^t}}}{t}=\lim\limits_{t\rightarrow0^+}\frac{\sqrt{\arcsin^2t-t^2}}{t\cdot\arcsin t}\lim\limits_{t\rightarrow0^+}=\frac{\sqrt{(\arcsin t+t)(\arcsin t-t)}}{t^2}=\lim\limits_{t\rightarrow0^+}\frac{\sqrt{2t(\frac{1}{6}x^3+o(x^3))}}{t^2}=\sqrt{\frac{1}{3}}