洛必达定理的正确使用姿势

洛必达定理(其中*可取x0,x0+,x0,,+,x_0,x_0^+, x_0^-, \infty,+\infty,-\infty):

条件一: limxf(x)=limxg(x)=0\lim\limits_{x\rightarrow *}f(x) = \lim\limits_{x\rightarrow *}g(x)=0(或\infty)

条件二: f(x),g(x)f(x),g(x)*的去心领域内可导,且g(x)̸=0g'(x)\not=0

条件三: limxf(x)g(x)=A\lim\limits_{x\rightarrow *}\frac{f'(x)}{g'(x)}=A(或\infty);

则有limxf(x)g(x)=limxf(x)g(x)=A\lim\limits_{x\rightarrow *}\frac{f(x)}{g(x)}=\lim\limits_{x\rightarrow *}\frac{f'(x)}{g'(x)}=A或(\infty)

注: 一定要当f(x),g(x)f(x),g(x)同时满足上述三个条件,才可以使用洛必达法则, 否则错误!

eg1:
limx1x33x+2x3x2x+1\lim\limits_{x\rightarrow 1}\frac{x^3-3x+2}{x^3-x^2-x+1}
=limx13x233x22x+1=\lim\limits_{x\rightarrow 1}\frac{3x^2-3}{3x^2-2x+1}
=limx16x6x2=\lim\limits_{x\rightarrow 1}\frac{6x}{6x-2}
̸=limx66=1\not=\lim\limits_{x\rightarrow }\frac{6}{6}=1(这一步不能继续使用洛必达法则,因为它不是未定式, 其极限已经存在)
=662=32=\frac{6}{6-2}=\frac{3}{2}(极限已经存在, 直接代入xx计算出结果即可)

eg2:
已知f(x)f(x)在点x=0x=0处连续, 且f(0)=0f(0)=0, 求limx0f(x)x.\lim\limits_{x\rightarrow 0}\frac{f(x)}{x}.
limx0f(x)x\lim\limits_{x\rightarrow 0}\frac{f(x)}{x}
̸=limx0f(x)1=f(0)\not=\lim\limits_{x\rightarrow 0}\frac{f'(x)}{1}=f'(0)(错, 题目并未说f(x)f(x)x=0x=0的去心领域内可导,故不可用洛必达法则)
=limx0f(x)f(0)x0=\lim\limits_{x\rightarrow 0}\frac{f(x)-f(0)}{x-0}
=f(0)=f'(0)

eg3:
limx0(1cosx)[xln(1+tanx)]sin4x\lim\limits_{x\rightarrow 0}\frac{(1-\cos x)[x-\ln(1+\tan x)]}{\sin^4 x} (等价无穷小替换\downarrow)

=limx012x2[xln(1+tanx)]x4=\lim\limits_{x\rightarrow 0}\frac{\frac{1}{2}x^2[x-\ln(1+\tan x)]}{x^4}

=12limx0xln(1+tanx)x2=\frac{1}{2}\lim\limits_{x\rightarrow 0}\frac{x-\ln(1+\tan x)}{x^2} (洛必达\downarrow)

=14limx01sec2x1+tanxx=\frac{1}{4}\lim\limits_{x\rightarrow 0}\frac{1-\frac{\sec^2x}{1+\tan x}}{x} (通分\downarrow)

=14limx01+tanxsec2xx2(1+tanx)=\frac{1}{4}\lim\limits_{x\rightarrow 0}\frac{1+\tan x-\sec^2x}{x^2(1+\tan x)} (计算并提出非零因子(1+tanx)(1+\tan x)\downarrow)

=14limx01+tanxsec2xx=\frac{1}{4}\lim\limits_{x\rightarrow 0}\frac{1+\tan x-\sec^2x}{x} (洛必达\downarrow)

=14limx0sec2x2secxtanxsecx1=\frac{1}{4}\lim\limits_{x\rightarrow 0}\frac{\sec^2x - 2\sec x\tan x \sec x}{1}

=14101=14=\frac{1}{4}\frac{1-0}{1} = \frac{1}{4}