泰勒公式与等价无穷小

(泰勒定理/泰勒公式)任何n阶可导函数都可以写成f(x)=i=1nanxnf(x)=\sum\limits_{i=1}^n a_nx^n. ⭐️⭐️⭐️

  1. 带拉格朗日余项的泰勒公式(用于证明):
    f(x)n+1f(x)n+1阶可导 \Rightarrow
    f(x)=f(x0)+f(x0)(xx0)+f(x0)2!(xx0)2++f(n)(x0)n!(xx0)n+f(n+1)(ξ)(n+1)!(xx0)n+1f(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\cdots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}

    其中f(n)(x0)n!(xx0)n\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n为通项,f(n+1)(ξ)(n+1)!(xx0)n+1\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}为拉氏余项,ξ\xi介于xxx0x_0之间.

  2. 带佩亚诺余项的泰勒公式(用于计算):
    f(x)nf(x)n阶可导 \Rightarrow
    f(x)=f(x0)+f(x0)+f(x0)2!(xx0)2++f(n)(x0)n!(xx0)n+o((xx0)n)f(x)=f(x_0)+f'(x_0) + \frac{f''(x_0)}{2!}(x-x_0)^2 +\cdots+ \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+o((x-x_0)^n)

    其中o((xx0)n)o((x-x_0)^n)为佩亚诺余项,表示(xx0)n(x-x_0)^n的高阶无穷小.

  3. x0=0x_0=0时,泰勒公式成为麦克劳林公式
    f(x)=f(0)+f(0)x+f(0)2!x2++f(n)(0)n!xn+o(xn)f(x)=f(0)+f'(0)x+\frac{f''(0)}{2!}x^2+\cdots+ \frac{f^{(n)}(0)}{n!}x^n+o(x^n)

x0x\rightarrow 0时的常用泰勒公式:

sinx=xx33!+x55!+o(x5)\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!}+ o(x^5)

arcsinx=x+12x33+1234x55+o(x3)\arcsin x = x + \frac{1}{2}\frac{x^3}{3} + \frac{1}{2}\frac{3}{4}\frac{x^5}{5} + o(x^3)

cosx=1x22!+x44!+o(x4)\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^4)

tanx=x+13x3+215x5+o(x5)\tan x = x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + o(x^5)

arctanx=xx33+x55+o(x5)\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} + o(x^5)

ln(1+x)=xx22+x33x44+o(x4)\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + o(x^4)

ex=1+x+x22!+x33!+o(x3)e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + o(x^3) 🌠

(1+x)a=1+ax+a(a1)2!x2+a(a1)(a2)3!x3+o(x3)(1+x)^a = 1 + ax + \frac{a(a-1)}{2!}x^2 + \frac{a(a-1)(a-2)}{3!}x^3+o(x^3)

11x=1+x+x2+x3+o(x3)\frac{1}{1-x} = 1 + x + x^2 + x^3 + o(x^3)

11+x=1x+x2x3+o(x3)\frac{1}{1+x} = 1 - x + x^2 - x^3 + o(x^3)

1+x=1+x2x28+o(x2)\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{8} + o(x^2)

11+x=1x2+38x3+o(x3)\frac{1}{\sqrt{1+x}} = 1 - \frac{x}{2}+\frac{3}{8}x^3+o(x^3)


等价无穷小

等价无穷小由泰勒公式推导而来, 可以通过泰勒公式的组合推导出更多的等价无穷小

  1. sinxx\sin x \sim x
  2. arcsinxx\arcsin x \sim x
  3. tanxx\tan x \sim x
  4. arctanxx\arctan x \sim x
  5. ex1xe^x-1 \sim x
  6. ln(1+x)xln(1+x) \sim x
  7. (1+x)α1αx(1+x)^\alpha-1 \sim \alpha x
  8. 1cosx12x21-\cos x \sim \frac{1}{2}x^2
  9. xsinx16x3x-\sin x \sim \frac{1}{6}x^3
  10. x+sinx=2xx + \sin x = 2x
  11. x2sin2x=x43x^2 - \sin^2 x = \frac{x^4}{3}
  12. xtanx=x3xx-\tan x=-\frac{x^3}{x}
  13. x1,lnx=ln(1+x1)x1x\rightarrow 1, lnx=ln(1+x-1) \sim x-1 🌠🌠

扩展等价无穷小的用法

(x0)(x\rightarrow 0)

  1. ex1xe^x-1 \sim x
    f(x)0,g(x)0)f(x)\rightarrow 0, g(x)\rightarrow 0)

    1. ef(x)1f(x)e^{f(x)}-1 \sim f(x)
    2. ef(x)eg(x)=eg(x)(ef(x)g(x)1)eg(x)(f(x)g(x))k(f(x)g(x))e^{f(x)} - e^{g(x)} = e^{g(x)}(e^{f(x)-g(x)}-1) \sim e^{g(x)}(f(x)-g(x)) \sim k(f(x)-g(x))

    eg1: limx0eecosx1+x231=limx0ecosx(e1cosx1)13x2=limx03e(1cosx)x2=limx03e12x2x2=32e\lim\limits_{x\rightarrow 0}\frac{e - e^{\cos x}}{\sqrt[3]{1+x^2}-1}=\lim\limits_{x\rightarrow 0}\frac{e^{\cos x}(e^{1-\cos x}-1)}{\frac{1}{3}x^2}=\lim\limits_{x\rightarrow 0}3e\frac{(1-\cos x)}{x^2}=\lim\limits_{x\rightarrow 0}3e\frac{\frac{1}{2}x^2}{x^2}=\frac{3}{2}e
    eg2: limx0exesinxx3=limx0esinx(exsinx1)x3=limx01(xsinx)x3=16\lim\limits_{x\rightarrow 0}\frac{e^x-e^{\sin x}}{x^3}=\lim\limits_{x\rightarrow 0}\frac{e^{\sin x}(e^{x-\sin x} - 1)}{x^3}=\lim\limits_{x\rightarrow 0}\frac{1\cdot(x-\sin x)}{x^3}=\frac{1}{6}

  2. ln(1+x)x\ln(1+x) \sim x
    f(x)1f(x)\rightarrow 1

    1. lnf(x)=ln(1+f(x)1)f(x)1\ln f(x) = \ln(1+f(x)-1) \sim f(x)-1

    eg1: limx0lncosxx2=limx0cosx1x2=limx012x2x2=12\lim\limits_{x\rightarrow 0}\frac{\ln\cos x}{x^2} = \lim\limits_{x\rightarrow 0}\frac{\cos x-1}{x^2}=\lim\limits_{x\rightarrow 0}\frac{-\frac{1}{2}x^2}{x^2}=-\frac{1}{2}
    eg2: limx0lnsinxx2=limx0sinxx1x2=limx0sinxxx3=limx016x3x3=16\lim\limits_{x\rightarrow 0}\frac{\ln\frac{\sin}{x}}{x^2} = \lim\limits_{x\rightarrow 0}\frac{\frac{\sin x}{x}-1}{x^2} = \lim\limits_{x\rightarrow 0}\frac{\sin x-x}{x^3} = \lim\limits_{x\rightarrow 0}\frac{-\frac{1}{6}x^3}{x^3}=-\frac{1}{6}

  3. (1+x)α1αx(1+x)^\alpha-1 \sim \alpha x ,(α\alpha常以分数的形式出现)

    1. (1+f(x))α1αf(x)(1+f(x))^\alpha-1 \sim \alpha f(x)

  4. 1cosx12x21-\cos x \sim \frac{1}{2}x^2

    1. 1cosf(x)12f2(x)1-\cos f(x) \sim \frac{1}{2}f^2(x)