函数极限的性质

  1. 唯一性
    limxx0f(x)=A\lim\limits_{x\rightarrow x_0}f(x)=A,则AA位移
  2. 局部有界性
    limxx0f(x)=A\lim\limits_{x\rightarrow x_0}f(x)=A,M>0,δ>0\exists M>0,\delta>0,当0<xx0<δ0<|x-x_0|<\delta是,恒有f(x)<M|f(x)|<M
  3. 局部包号性
    limxx0f(x)=A>0\lim\limits_{x\rightarrow x_0}f(x)=A>0, 则xx0x\rightarrow x_0时,f(x)>0f(x)>0
    limxx0f(x)=A<0\lim\limits_{x\rightarrow x_0}f(x)=A<0, 则xx0x\rightarrow x_0时,f(x)<0f(x)<0

[例 唯一性]
aa为常数,I=limx0(e1/xπe2/x1+aarctan1xI=\lim\limits_{x\rightarrow 0}(\frac{e^{1/x}-\pi}{e^{2/x}-1}+a\arctan\frac{1}{x}存在,求a,Ia,I.
解:
x0x \rightarrow 0时, 一般要从xx+,xxx \rightarrow x^+, x\rightarrow x^-两个方向进行考虑.
limx0+(e1/xπe2/x1+aarctan1x=0+aπ2\lim\limits_{x\rightarrow 0^+}(\frac{e^{1/x}-\pi}{e^{2/x}-1}+a\arctan\frac{1}{x} =0 + \frac{a\pi}{2}
limx0(e1/xπe2/x1+aarctan1x=0π01aπ2\lim\limits_{x\rightarrow 0^-}(\frac{e^{1/x}-\pi}{e^{2/x}-1}+a\arctan\frac{1}{x} =\frac{0-\pi}{0-1} -\frac{a\pi}{2}
\Rightarrow
aπ2=πaπ2\frac{a\pi}{2} = \pi -\frac{a\pi}{2} \Rightarrow a=1,I=π2a=1, I=\frac{\pi}{2}

[例 有界性]
f(x)=xsin(x2)x(x1)(x2)2f(x)=\frac{|x|\sin(x-2)}{x(x-1)(x-2)^2}在()内有界:
A.(-1,0) B.(0,1) C.(1,2) D.(2,3)
分析: 讨论f(x)f(x)在指定区间II上的有界性,方法总结如下:

  1. 理论上: 若I=[a,b]I=[a,b],用"连续函数在闭区间上必有界"
  2. 三段论: 若I=(a,b)I=(a,b),则f(x)满足下列3个条件时在区间II内连续
    1. limxa+f(x)\lim\limits_{x\rightarrow a^+}f(x)存在
    2. limxbf(x)\lim\limits_{x\rightarrow b^-}f(x)存在
    3. f(x)在(a,b)内连续

解:
limx1+xsin(x2)x(x1)(x2)2=(x)sin(x2)x(x1)(x2)2=sin(3)(2)(3)2\lim\limits_{x\rightarrow -1^+}\frac{|x|\sin(x-2)}{x(x-1)(x-2)^2} = \frac{(-x)\sin(x-2)}{x(x-1)(x-2)^2} = \frac{-\sin(-3)}{(-2)(-3)^2}存在
limx0xsin(x2)x(x1)(x2)2=(x)sin(x2)x(x1)(x2)2=sin(2)(1)(2)2\lim\limits_{x\rightarrow 0^-}\frac{|x|\sin(x-2)}{x(x-1)(x-2)^2} = \frac{(-x)\sin(x-2)}{x(x-1)(x-2)^2} = \frac{-\sin(-2)}{(-1)(-2)^2}存在
又由于f(x)f(x)是初等函数, 故f(x)f(x)在(-1,0)内连续, 因此f(x)f(x)在(-1,0)内有界, 答案为A.

[例 保号性]
limx0f(x)=f(0)\lim\limits_{x\rightarrow 0}f(x)=f(0)limx0f(x)1cosx=2\lim\limits_{x\rightarrow 0}\frac{f(x)}{1-\cos x}=-2, 则x=0x=0是:
A.极大值点 B.极小值点 C.非极值点 D.无法判断

解:
f(0)=limx0f(x)=limx0f(x)1cosx(1cosx)=20=0f(0) = \lim\limits_{x\rightarrow 0}f(x) = \lim\limits_{x\rightarrow 0}\frac{f(x)}{1-\cos x}(1-\cos x) = -2*0 = 0, 当x0x\rightarrow 0时, 1cosx>01-\cos x > 0,但f(x)/(1cosx)=2<0f(x)/(1-\cos x)=-2<0, 所以根据保号性, 当x0x\rightarrow 0时,f(x)<0f(x)<0, 故x=0x=0f(x)f(x)的极大值点.