函数极限定义

自变量变化的描述:

  1. xx0:δ>0x \rightarrow x_0 : \exists \delta > 0, 当0<xx0<δ0<|x-x_0|<\delta,
  2. xx0+:δ>0x \rightarrow x_0^+ : \exists \delta > 0, 当0<xx0<δ0<x-x_0<\delta,
  3. xx0:δ>0x \rightarrow x_0^- : \exists \delta > 0, 当0<x0x<δ0<x_0-x<\delta,
  4. x:X>0x \rightarrow \infty : \exists X > 0, 当x>X|x|>X,
  5. x+:X>0x \rightarrow +\infty: \exists X > 0, 当x>Xx>X,
  6. x:X>0x \rightarrow -\infty: \exists X > 0, 当x<Xx<-X,

因变量变化的描述:

  1. f(x)A:ε>0,...f(x) \rightarrow A : \forall \varepsilon > 0, \exists...,当..., f(x)A<ε|f(x) - A| < \varepsilon
  2. f(x):M>0,...f(x) \rightarrow \infty : \forall M > 0, \exists...,当..., f(x)>M|f(x)| > M
  3. f(x)+:M>0,...f(x) \rightarrow +\infty : \forall M > 0, \exists...,当..., f(x)>Mf(x) > M
  4. f(x):M>0,...f(x) \rightarrow -\infty : \forall M > 0, \exists...,当..., f(x)<Mf(x) < -M

例子:

  1. limxf(x)=+M>0,X>0\lim\limits_{x\rightarrow{\infty}}f(x)=+\infty \Leftrightarrow \forall M>0, \exists X>0,当x>X|x|>X时,有f(x)>Mf(x)>M
  2. limxf(x)=Aε>0,X>0,\lim\limits_{x\rightarrow\infty} f(x)=A \Leftrightarrow \forall \varepsilon>0, \exists X>0,x>X|x|>X时, 有f(x)A<ε|f(x)-A|<\varepsilon
  3. limxx0f(x)=+M>0,δ>0\lim\limits_{x\rightarrow{x_0}}f(x)=+\infty \Leftrightarrow \forall M>0, \exists \delta>0,当0<xx0<δ0<|x-x_0|<\delta时,有f(x)>M|f(x)|>M
  4. limxx0f(x)=Aε>0,δ>0,\lim\limits_{x\rightarrow x_0} f(x)=A \Leftrightarrow \forall \varepsilon>0, \exists\delta>0,0<xx00<|x-x_0|时, 有f(x)A<ε|f(x)-A|<\varepsilon