高中数学基础知识

一元二次方程

ax2+bx+c=0(a̸=0)ax^2+bx+c=0(a\not=0)
根: x1,x2=b±Δ2a,Δ=b24acx_1,x_2=\frac{-b\pm\sqrt{\Delta}}{2a}, \Delta=b^2-4ac
根与系数的关系:x1+x2=ba,x1x2=cax_1+x_2=-\frac{b}{a}, x_1\cdot x_2=\frac{c}{a}
抛物线y=ax2+bx+cy=ax^2+bx+c的顶点:(b2a,cb24a)(-\frac{b}{2a},c-\frac{b^2}{4a})

因式分解

(a±b)2=a2±2ab+b2(a\pm b)^2=a^2 \pm 2ab+b^2
(a+b)3=a3+3a2b+3ab2+b3(a+b)^3=a^3+3a^2b+3ab^2+b^3
(ab)3=a3+3a2(b)+3a(b)2+(b)3=a33a2b+3ab2b3(a-b)^3=a^3+3a^2(-b)+3a(-b)^2+(-b)^3=a^3-3a^2b+3ab^2-b^3
(a+b)(ab)=a2b2(a+b)(a-b)=a^2-b^2
a3b3=(ab)(a2+ab+b2)a^3-b^3=(a-b)(a^2+ab+b^2)
a3+b3=(a+b)(a2ab+b2)a^3+b^3=(a+b)(a^2-ab+b^2)

不等式

  1. 有限个数相加的和小于等于这些数绝对值的和.
    例如:
    a+ba+ba + b \le |a|+|b|
    f(x)=f(x)A+Af(x)A+Af(x) = f(x)-A+A \le |f(x)-A| + |A|

  2. a,ba,b为实数,则

    1. 2aba2+b22|ab|\le a^2+b^2
    2. a±ba+ba\pm b\le |a|+|b|
    3. abab||a|-|b||\le|a-b|
    4. 推广:
      1. 离散情况:a1±a2±±ana1+a2++an|a_1\pm a_2\pm \cdots \pm a_n|\le |a_1|+|a_2|+\cdots+|a_n|
      2. 连续情况,设f(x)f(x)[a,b][a,b]上可积,则:abf(x)dxabf(x)dx(a<b)|\lmoustache_a^b f(x)dx| \le \lmoustache_a^b|f(x)|dx (a<b)
  3. a1,a2,a3,,an>0,a_1,a_2,a_3,\cdots,a_n>0,则,

    1. a1a2a3anna1+a2++ann\sqrt[n]{a_1a_2a_3\cdots a_n} \le \frac{a_1+a_2+\cdots+a_n}{n} (当且仅当a1=a2==ana_1=a_2=\cdots=a_n时等号成立)
    2. a1+a2++anna12+a22++an2nn\frac{a_1+a_2+\cdots+a_n}{n} \le \sqrt[n]{\frac{a_1^2+a_2^2+\cdots+a_n^2}{n}} (当且仅当a1=a2==ana_1=a_2=\cdots=a_n时等号成立)
    3. 常用以下两种特殊形式:
      1. aba+b2a2+b22,(a,b>0)\sqrt{ab}\le\frac{a+b}{2}\le\sqrt{\frac{a^2+b^2}{2}}, (a,b>0)
      2. abc3a+b+c3a2+b2+c23,(a,b,c>0)\sqrt[3]{abc}\le\frac{a+b+c}{3}\le\sqrt{\frac{a^2+b^2+c^2}{3}}, (a,b,c>0)
  4. f(x),g(x)f(x),g(x)[a,b][a,b]上可积分且平方可积,则:
    [baf(x)g(x)dx]2baf2(x)dxbag2(x)dx[\lmoustache_b^af(x)g(x)dx]^2 \le \lmoustache_b^af^2(x)dx\cdot\lmoustache_b^ag^2(x)dx

  5. 其他重要不等式

    1. arctanx<x<arcsinx(0x1)\arctan x < x < \arcsin x(0\le x\le1)
    2. x+1ex(x),lnxx1(x>0)x+1\le e^x(\forall x),\ln x \le x-1(x>0)
    3. 11+x<ln(1+1x)<1x(x>0)\frac{1}{1+x}<\ln(1+\frac1x)<\frac{1}{x}(x>0)

      证明: 令f(x)=ln(x),f(x)=\ln(x),在区间[x,x+1][x,x+1]上对其用拉格朗日中值定理,有
      ln(1+1x)=ln(1+x)ln(x)=1ξ,(x<ξ<x+1)\ln(1+\frac{1}{x})=\ln(1+x)-\ln(x)=\frac{1}{\xi},(x<\xi<x+1)
      因此,当x>0时, 有11+x<ln(1+1x)=1ξ<1x\frac{1}{1+x}<\ln(1+\frac1x)=\frac{1}{\xi}<\frac{1}{x}

数列

等差数列(公差): a1,a1+d,a1+2d,,a1+(n1)d,,(d̸=0)a_1, a_1+d, a_1+2d, \cdots, a_1+(n-1)d, \cdots,(d\not=0)
通项公式: an=a1+(n1)da_n = a_1+(n-1)d
前n项和: Sn=n2(a1+an)S_n=\frac{n}{2}(a_1+a_n)

等比数列: a,aq,aq2,,aqn1,a, aq, aq^2,\cdots, aq^{n-1},\cdots,(q̸=1q\not=1)
通项公式:an=aqn1a_n=aq^{n-1}
前n项和:Sn=a(1qn)1qS_n=\frac{a(1-q^n)}{1-q}

一些数列的前n项和:
k=1nk=1+2+3++n=n(n+1)2\sum\limits_{k=1}^nk=1+2+3+\cdots+n=\frac{n(n+1)}{2}

k=1n(2k1)=1+3+5++(2n1)=(1+2n1)n2=n2\sum\limits_{k=1}^n(2k-1)=1+3+5+\cdots+(2n-1)=\frac{(1+2n-1)n}{2}=n^2

k=1nk2=12+22+32++n2=n(n+1)(2n+1)6\sum\limits_{k=1}^nk^2=1^2+2^2+3^2+\cdots+n^2=\frac{n(n+1)(2n+1)}{6}

k=1nk3=13+23+33++n3=[n(n+1)2]2=(k=1nk)2\sum\limits_{k=1}^nk^3=1^3+2^3+3^3+\cdots+n^3=[\frac{n(n+1)}{2}]^2=(\sum\limits_{k=1}^nk)^2

三角函数

诱导公式:奇变偶不变, 符号看象限

平方关系:
sin2a+cos2=1\sin^2a+\cos^2=1

1+tan2a=sec2a1+\tan^2 a = \sec^2a

1+cot2a=csc2a1+\cot^2 a = \csc^2a

倍角公式:
cos2a=cos2asin2a=2cos2a1=12sin2a\cos2a=\cos^2a-\sin^2a=2\cos^2a-1=1-2\sin^2a

sin2a=2sinacosa\sin2a=2\sin a\cos a

cos3a=4cos3a3cosa\cos3a = 4\cos^3a-3\cos a

sin3a=4sin3a+3sina\sin3a = -4\sin^3a+3\sin a

tan2a=2a1tan2a\tan2a = \frac{2a}{1-\tan^2a}

万能公式:
sina=2tana21+tan2a2\sin a = \frac{2\tan \frac{a}{2}}{1+\tan^2 \frac{a}{2}}

cosa=1tan2a21+tan2a2\cos a = \frac{1-\tan^2 \frac{a}{2}}{1+\tan^2\frac{a}{2}}

tana=2tana21tan2a2\tan a = \frac{2\tan\frac{a}{2}}{1-\tan^2 \frac{a}{2}}

阶乘和双阶乘

n!=1×2×3××n,(0!=1)n!=1\times2\times3\times\cdots\times n,(0!=1)
(2n)!!=2×4×6××(2n)=2nn!(2n)!!=2\times4\times6\times\cdots\times(2n)=2^n\cdot n!